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Abstract The phase transition of TiN from the NaCl

structure to the CsCl structure is investigated by the first-

principles plane wave pseudopotential density functional

theory method, and the thermodynamic properties of the

NaCl structures are obtained through the quasi-harmonic

Debye model. It is found that the pressures for transition

from the NaCl structure to the CsCl structure are 364.1 GPa

(for GGA) and 322.2 (for LDA) from equal enthalpies. The

calculated ground state properties such as equilibrium lat-

tice constant, bulk modulus, and its pressure derivative are

in good agreement with experimental and theoretical data

of others. Moreover, the dependences of the relative vol-

ume V/V0 on the pressure P, the Debye temperature HD,

and heat capacity CV on the pressure P and temperature T,

as well as the variation of the thermal expansion a with

temperature and pressure are also successfully obtained.

Keywords Phase transition � Thermodynamic property �
TiN

Introduction

The transition metal compounds (TMC), which crystallize

in an NaCl (B1)-structure at ambient pressure, have been a

topic of great interest because of their optical, magnetic,

and electrical properties. The high-pressure studies on

various materials are significantly important both from

basic and applied point of view. The transition metal

compounds play an important role in solid-state technol-

ogy, as they have many scientific, industrial, and techno-

logical applications [1, 2]. Titanium nitride is a metallic

compound characterized by high melting point, ultra-

hardness (comparable to that of diamond), good electrical

and thermal conductivity, and high resistance to corrosion

[3]. The interesting properties of TiN have been studied

with many methods in recent years [4, 5]. TiN is presently

one of the most important materials for hardness and cor-

rosion resistant coating [6, 7]. Presently interest is also

developing within the microelectronic industry for the use

of TiN as an electrically conducting barrier [1].

There are large number of experiments devoted to var-

ious aspects of TiN film growth [8–10] and many theo-

retical calculations about elastic modulus for TiN [1, 11,

12]. Although several research groups have experimental

and theoretically investigated the pressure induced phase

transitions in TiN using different methods. For example,

Zhao et al. [13] investigated the behavior of TiN using

axial X-ray diffraction under high pressure to 30.1 GPa.

Their experimental results suggested an isostructural phase

transition at about 7 GPa as shown by the discontinuity of

V/V0 data with pressure. Ahuja et al. [1], with the LDA

approximation, studied the structural phase transition of

TiN from NaCl structure to CsCl structure as 370 GPa.

Chauhan et al. [14]., by using the three body potential

model (TBPM) approach, predicted that the phase transi-

tion pressure occurs at 310 GPa and found that the mag-

nitude of relative volume change at the transition pressure

lies at 9%. So far, there has been considerable controversy

for the phase transition of TiN. On the other hand, to the
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best of our knowledge, the thermodynamic properties of

TiN have not previously been reported. So, we here make

first-principles calculations on the thermodynamic proper-

ties and the phase transition of TiN from NaCl structure to

CsCl structure.

Theoretical method

Total energy electronic structure calculations

We here adopt the non-local ultrasoft pseudopotential

introduced by Vanderbilt [15], together with the local-

density approximation (LDA) [16] and the Perdew–Burke–

Ernzerhof (PBE) generalized gradient approximation

(GGA) [17] exchange–correlation function. Pseudo atomic

calculations are performed for N 2s2 2p3 and Ti 3s2 3p6

3d2 4s2. A kinetic cut-off of plane wave 350 eV and a

10 9 10 9 10 Monkhorst–Pack [18] grid for the Brillouin-

zone sampling are used throughout. The threshold of

10-7 eV/atom is used to determine whether the self-con-

sistent progress has been converged. All the total energy

electronic structure calculations are implemented through

the CASTEP code [19, 20].

Thermodynamic properties

By the experimental methods, such as TG, DSC, and NMR,

there are many reports on the thermodynamic properties

[21–24]. In this study, we also focus on the thermodynamic

properties using a different method. We here apply the

quasi-harmonic Debye model [25], in which the phononic

effects are considered and by which the thermodynamic

properties of MgB2 [26–28], osmium [29], ZnS [30], and

GaN [31] are successfully obtained. In the quasi-harmonic

Debye model, the non-equilibrium Gibbs function

G*(V; P, T) takes the form of

G�ðV; P; TÞ ¼ EðVÞ þ PV þ AVib½HðVÞ; T� ð1Þ

where H(V) is the Debye temperature, and the vibrational

term AVib can be written as [32, 33]

AVibðH;TÞ ¼ nKT
9

8

H
T
þ 3 lnð1� e�H=TÞ�DðH=TÞ

� �
ð2Þ

where D(H/T) represents the Debye integral, n is the

number of atoms per formula unit. The non-equilibrium

Gibbs function G*(V; P, T) as a function of (V; P, T) can

be minimized with respect to volume V

oG�ðV ; P; TÞ
oV

� �
P;T

¼ 0 ð3Þ

By solving Eq. 3, one can get the thermal EOS V(P, T).

The isothermal bulk modulus BT, the heat capacity Cv, and

the thermal expansion coefficient a are given by [34]

BTðP; TÞ ¼ V
o2G�ðV ; P; TÞ

oV2

� �
P;T

; ð4Þ

CV ¼ 3nk 4DðH=TÞ � 3H=T

eH=T � 1

� �
ð5Þ

a ¼ cCV

BT V
ð6Þ

Through the quasi-harmonic Debye model, one could cal-

culate the thermodynamics quantities of any temperatures

and pressures of TiN from the calculated energy–volume

points at T = 0 and P = 0.

Experimental method

We investigated the compression behavior of TiN using

synchrotron radial X-ray diffraction (RXRD) technique

under nonhydrostatic compression up to 45.4 GPa in a

diamond–anvil cell. We obtained the hydrostatic com-

pression equation of state of TiN. Fitting to the third-order

Birch–Murnaghan equation of state, the bulk modulus

derived from nonhydrostatic compression data varies from

232 to 353 GPa, depending on angle W, the orientation of

the diffraction planes with respect to the loading axis. The

RXRD data obtained at W = 54.7� yield a bulk modulus

B0 = 282 ± 9 GPa with pressure derivative B0

0
fixed at

four, which reported by us earlier [35].

Results and discussion

For both the NaCl and CsCl structures of TiN, we, using

both the GGA and the LDA, take a series of lattice con-

stants a to obtain the total energy E and the corresponding

primitive cell volume V, and the GGA-calculated results

are illustrated in Fig. 1. The calculated equilibrium lattice

constants a, zero-pressure bulk modulus B0, and its pres-

sure derivation B0
0 from the Birch–Murnaghan equation of

state (EOS) [36] are listed in Table 1, together with

experimental data and other theoretical results for the NaCl

structure. The agreement among them is good. Unfortu-

nately, there are no other theoretical and experimental data

for checking our results for the CsCl structures.

An estimate of the zero-temperature transition pressure

between the NaCl and the CsCl structures of TiN may be

obtained from the usual condition of equal enthalpies, i.e.,

the pressure P at which enthalpies, H = E ? PV, of both

phases are the same. Figure 2 shows the enthalpy for GGA

974 K. Liu et al.
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as a function of the pressure. It is found that the transition

pressure from the NaCl structure to CsCl structure is about

364.1 GPa. Using the same method, we can obtain the

transition pressure of 322.2 GPa for LDA. For comparison,

the previous phase transition pressures Pt are also listed in

Table 1.

In Fig. 3, for the transition pressure of 364.1 GPa, we

illustrate the normalized primitive cell volume V/V0 (V0 is

the zero-pressure equilibrium primitive cell volume)

dependences on pressure P at T = 300 and 2,500 K. For

comparison, our experimental data observed by RXRD

method at W = 54.7� up to 45.4 GPa are also presented.

Obviously, as the pressure P increases, the relative volume

V/V0 decreases at a given temperature for the two struc-

tures. On the other hand, the partial enlarged view at

T = 300 K, as an up-right inset to Fig. 3, proves that there

exists a volume collapse in volume at phase transition

pressure.
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Fig. 1 Total energy (GGA) as a function of primitive cell volume for

TiN

Table 1 The lattice constants, bulk moduli, pressure derivative of bulk modulus of the NaCl structure and CsCl structure of TiN at zero pressure,

together with the transition pressures

Present calc. Other calc. Expt.

NaCl structure

a/Å 4.246 (GGA) 4.175 (LDA) 4.26a, 4.18b, 4.175/4.236/4.237/4.260e, 4.24h, 4.32i, 4.253m 4.240j, 4.235k

B0/GPa 277.99 320. 60 286a, 322b, 270c, 310d 319/282/282/266e, 305h, 389i, 280m 282 ± 9 (present) 320c, 282f, 288i

B0

0
4.30 4.25 4.3/4.2/4.2/4.2e 4 (present)

Pt/Gpa 364.1 322.2 370c, 310g

CsCl structure

a/Å 2.637 2.585

B0/Gpa 253.83 298.88

B0

0
4.19 4.18

a From the FLAPW–GGA method [37]
b From the FLAPW method [37]
c From the GGA method [1]
d From the LDA method [1]
e From the LDA/PW91/PBE/RPBE method [11]
f Ref. [38]
g Ref. [14]
h From the LAPW method [39]
i From the LMTO-ASA method [40]
j Ref. [41]
k Ref. [42]
m Ref. [12]
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Fig. 2 Enthalpy (GGA) as a function of pressure for TiN
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From the quasi-harmonic Debye model, we can deter-

mine the thermal expansion coefficient a of TiN at

simultaneous extreme pressure P and temperature T con-

ditions, GGA results are shown in Fig. 4. It is noted that at

zero pressure a increases exponentially with T at low

temperatures and gradually approaches to a linear increase

at high temperatures. As the pressure increases, the

increase of a with temperature becomes smaller, espe-

cially at high temperature. At a given temperature, a
decreases strongly with increasing pressure, the thermal

expansion coefficient a at 3,000 K is just a little larger

than that at 2,000 K, as means that the temperature

dependence of a is very small at high temperature and

higher pressure.
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Fig. 3 The normalized primitive cell volume V/V0 as a function of

pressure P for the NaCl and CsCl structures of TiN at T = 30;

2,500 K; together with the experimental data up to 45.4 GPa
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Fig. 4 The thermal expansion (GGA) versus temperature and pressure

for TiN

Table 2 The heat capacity CV/J mol-1 K-1 and the Debye temperature HD/K over a wide range of temperatures and pressures for the NaCl and

CsCl structures of TiN

T/K P/GPa 0 60 100 300 400 420 450

300 NaCl CV 34.51 26.79 23.44 14.28

HD 847.76 1133.11 1268.10 1732.32

CsCl CV 12.44 12.02 11.44

HD 1857.44 1888.40 1932.80

700 NaCl CV 46.55 44.00 42.65 37.46

HD 830.15 1124.01 1260.68 1728.50

CsCl CV 35.98 35.61 35.08

HD 1854.16 1885.20 1929.83

1,400 NaCl CV 49.08 48.37 47.97 46.32

HD 798.68 1102.21 1244.16 1718.15

CsCl CV 45.81 45.68 45.49

HD 1844.85 1876.06 921.17

2,000 NaCl CV 49.51 49.16 48.96 48.11

HD 775.69 1082.33 1228.12 1708.43

CsCl CV 47.85 47.78 47.68

HD 1835.92 1867.34 1912.80

2,700 NaCl CV 49.69 49.51 49.39 48.92

HD 756.45 1057.94 1209.11 1696.65

CsCl CV 48.76 48.73 48.67

HD 1825.88 1856.85 1903.19

976 K. Liu et al.
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On the other hand, in Table 2, we list the GGA heat

capacities and the Debye temperatures at various temper-

atures (300; 700; 1,400; 2,000; 2,700 K) and pressures

(0, 60, 100, 300, 400, 420 and 450 GPa). It is found from

Table 2 that the heat capacity CV in this study is

34.51 Jmol-1K-1 at zero pressure and ambient tempera-

ture. As pressure increases, the heat capacity CV decreases

and the Debye temperature HD increases. For the NaCl

structure, when the applied pressure increases from 0 to

300 GPa, the heat capacities decrease by 58.6, 19.5, 5.6,

2.8, and 1.6% and the Debye temperatures increase by

104.3, 108.2, 115.1, 120.2, and 124.2% at T = 300; 700;

1,400; 2,000; and 2,700 K, respectively. Correspondingly,

for the CsCl structure, when the pressure from 400 to

450 GPa, the heat capacity decreases by 7.9, 2.5, 0.7, 0.4,

and 0.2%, and the Debye temperature increases by 4.06,

4.08, 4.14, 4.19, and 4.23%, respectively.

The variations of the heat capacity CV and the Debye

temperature HDwith pressure P both in the NaCl and the

CsCl structures for GGA results are shown in Fig. 5. They

are normalized by (X - X0)/X0, where X and X0 are the

heat capacity or Debye temperature at any pressure P and

zero pressure. It is shown that, for the two structures of

TiN, when the temperature keeps constant, the heat

capacity CV decreases with the applied pressures, as is

owing to that the effect of increasing pressure on the

material is the same as decreasing temperature of the

material. On the other hand, the Debye temperature HD

increases almost linearly with applied pressures.

The heat capacity of the NaCl structure and the CsCl

structure of TiN for several pressures are plotted in Fig. 6,

which shows that when T \ 1,800 K, the heat capacity CV

is dependent on the temperature and pressure. This is

because of the anharmonic approximations of the Debye

model used here. However, at higher temperatures, the

anharmonic effect on CV is suppressed, as temperature

increases, the heat capacity CV nearly approaches to the

Dulong-Petit result 3 kB (&49.90 J mol-1 K-1), which is

followed to all solids at high temperature.

Conclusions

In summary, we have investigated the phase transition of

TiN from the NaCl structure to the CsCl structure by the

ab initio plane-wave pseudopotential density functional

theory method. The pressure of transition from the NaCl

structure to the CsCl structure is 364.1 GPa for GGA and

322.2 GPa for LDA from equal enthalpies. Moreover, the

dependences of the normalized primitive cell volume on

pressure at several temperatures, the Debye temperature

HDand heat capacity CV on the pressure P, and the heat

capacity CV on the temperature T can also be successfully

obtained from the quasiharmonic Debye model.
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